WEEKLY TEST MEDICAL PLUS-02 TEST - 03 Balliwala SOLUTION Date 21-07-2019

[PHYSICS]

1.
2. $\quad \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} ; \quad \therefore$ unit of $\varepsilon_{0}=\frac{\left(\text { coulomb }{ }^{2}\right)}{\left(\text { newton }-\mathrm{m}^{2}\right.}$
3. Here, $\frac{2 \pi}{\lambda}(c t-x)$ is dimensionless. Hence, $\frac{c t}{\lambda}$ is also dimensionless and unit of ct is same as that of x.

Therefore, unit of λ is same as that of x. Also unit of y is same as that of A, which is also the unit of x.
4. We know that the units of physical quantities which can be expressed in terms of fundamental units are called derived units. Mass, length and time are fundamental units but volume is a derived unit (as $V=L^{3}$)
6.
$C R=\frac{q}{V} \times \frac{V}{l}=\frac{q}{q / t}=t$
$[\mathrm{CR}]=[\mathrm{T}]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right]$
$[\mathrm{a}]=\left[\mathrm{PV}^{2}\right]$
$=\left[\frac{\mathrm{FV}^{2}}{\mathrm{~A}}\right]=\frac{\left[\mathrm{ML}^{-2} \mathrm{~T}^{6}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{MLT}^{5-2}\right]$
8.
$\mathrm{E}=\mathrm{hv}$ or $[\mathrm{h}]=\left[\frac{\mathrm{E}}{\mathrm{v}}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
9. We know that dimension of velocity of light $[\mathrm{c}]=\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$; dimension of gravitational constant $[\mathrm{G}]=\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-}\right.$ $\left.{ }^{2}\right]$ and dimension of Planck's constant $[\mathrm{h}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$. Solving the above three equations, we get; $[\mathrm{M}]=\left[\mathrm{c}^{1 /}\right.$ ${ }^{2} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$.
12. $\frac{\Delta V}{\mathrm{~V}}=3 \times \frac{\Delta \mathrm{r}}{\mathrm{r}}=3 \times \frac{1}{100}=\frac{3}{100}=3 \%$
13. Given length $(\ell)=3.124 \mathrm{~m}$ and breadth $(\mathrm{b})=3.002 \mathrm{~m}$. We know that area of the sheet $(A)=\ell \times b=3.124 \times$ $3.002=9.378248 \mathrm{~m}^{2}$. Since, both length and breadth have four significant figures, therefore area of the sheet after rounding off to four significant is $9.378 \mathrm{~m}^{2}$.
14. $\frac{[\mathrm{h}]}{[1]}=\frac{[\mathrm{E} \lambda]}{[\mathrm{Cl}]}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left[\mathrm{LT}^{-1}\right]\left[\mathrm{ML}^{2}\right]}$
$=\left[\mathrm{T}^{-1}\right]=$ [frequency].
15. Unit of energy $=[F]^{x}[A]^{y}[T]^{2}$
$[\mathrm{M}]^{1}[\mathrm{~L}]^{2}[\mathrm{~T}]^{-2}=\left[\mathrm{MLT}^{-2}\right]^{\mathrm{x}}\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]^{\mathrm{y}}\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]^{2}$
or $\quad[\mathrm{M}]^{1}[\mathrm{~L}]^{2}[T]^{-2}=\mathrm{M}^{\times} \mathrm{L}^{\mathrm{x}+\mathrm{y}} \mathrm{T}^{-2 x-2 y+z}$
For equality,
$x=1, x+y=2$ or $y=1$
$-2 x-2 y+z=-2$ or $z=2$
$\therefore \quad$ Unit of energy $=[F]^{1}[A]^{1}[T]^{2}$
16. $\mathrm{P}=\frac{\sqrt{\mathrm{abc}^{2}}}{\mathrm{~d}^{3} \mathrm{e}^{1 / 3}}$
$=\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100$
$=\left[\frac{1}{2} \times \frac{\Delta \mathrm{a}}{\mathrm{a}}+\frac{1}{2} \times \frac{\Delta \mathrm{b}}{\mathrm{b}}+\frac{\Delta \mathrm{c}}{\mathrm{c}}+3 \times \frac{\Delta \mathrm{d}}{\mathrm{d}}+\frac{1}{3} \times \frac{\Delta \mathrm{e}}{\mathrm{e}}\right] \times 100$
$=\left[\frac{1}{2} \times 2 \%+\frac{1}{2} \times 3 \%+2 \%+3 \times \%+\frac{1}{3} \times 6 \%\right]$
$=[1 \%+1.5 \%+2 \%+3 \%+2 \%]$
The minimum amount of error is contributed by the measurement of a.
17. $y=\frac{a^{4} b^{2}}{\left(c d^{4}\right)^{1 / 3}}$

Taking log on both sides,
$\log y=4 \log a+2 \log b-\frac{1}{3} \log c-\frac{4}{3} \log d$
Differentiating,
$\frac{\Delta y}{y}=4 \frac{\Delta a}{a}+2 \frac{\Delta b}{b}-\frac{1}{3} \frac{\Delta c}{c}-\frac{4}{3} \frac{\Delta d}{d}$
Percentage error in y ,
$\frac{\Delta y}{y} \times 100=4\left(\frac{\Delta a}{a} \times 100\right)+2\left(\frac{\Delta b}{b} \times 100\right)+\frac{1}{3}\left(\frac{\Delta c}{c} \times 100\right)+\frac{4}{3}\left(\frac{\Delta d}{d} \times 100\right)$
$=\left[4 \times 2 \%+2 \times 3 \%+\frac{1}{3} \times 4 \%+\frac{4}{3} \times \%\right]=22 \%$
18. $\mathrm{E}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right], \mathrm{G}=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right], \mathrm{I}=\left[\mathrm{MLT}^{-1}\right]$ and $\mathrm{M}=[\mathrm{M}]$
\therefore Dimensions of $\frac{\mathrm{GIM}^{2}}{\mathrm{E}^{2}}$
$=\frac{\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\left[\mathrm{MLT}^{-1}\right]\left[\mathrm{M}^{2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}=[\mathrm{T}]$
19. Let $v \propto \sigma^{a} \rho^{b} \lambda^{c}$

Equation dimensions on both sides,
$\left[M^{0} L^{1} \mathrm{~T}^{-1}\right] \propto\left[\mathrm{MT}^{-2}\right]^{a}\left[\mathrm{ML}^{-3}\right]^{\mathrm{b}}[\mathrm{L}]^{\mathrm{c}}$
$\propto[M]^{a+b}[L]^{-3 b+c}[T]^{-2 a}$
Equation the powers of $\mathrm{M}, \mathrm{L}, \mathrm{T}$ on the both sides, we get;
$a+b=0$
$-3 b+c=1$
$-2 a=-1$
Solving, we get;
$a=\frac{1}{2}, b=-\frac{1}{2}, c=-\frac{1}{2}$
$\therefore \quad \mathrm{V} \propto \sigma^{1 / 2} \rho^{-1 / 2} \lambda^{-1 / 2}$
$\therefore \quad \mathrm{v}^{2} \propto \frac{\sigma}{\rho \lambda}$
20. $1 / 8$ th of the circumference $=\frac{360^{\circ}}{8}=45^{\circ}$

Change in velocity, $\sqrt{v^{2}+v^{2}-2 v^{2} \cos 45^{\circ}}=0.765 v$

AVIRAL CLASSES

creating scholars
23. $[$ Energy density $]=\left[\frac{\text { Work done }}{\text { Volume }}\right]=\frac{\left[\mathrm{MLT}^{-2} . \mathrm{L}\right]}{\left[\mathrm{L}^{3}\right]}$
[Young's modulus $]=[\mathrm{Y}]=\left[\frac{\text { Force }}{\text { Area }}\right] \times \frac{[\ell]}{\Delta \ell}$
$=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]} \cdot \frac{[\mathrm{L}]}{[\mathrm{L}]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
The dimensions of 1 and 4 are the same.
26. (a) $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \quad \therefore r=\sqrt{x^{2}+y^{2}+z^{2}}$ $r=\sqrt{6^{2}+8^{2}+10^{2}}=10 \sqrt{2} \mathrm{~m}$
27. (a) $\vec{r}=20 \hat{i}+10 \hat{j} \quad \therefore r=\sqrt{20^{2}+10^{2}}=22.5 \mathrm{~m}$
28. (c) From figure, $\overrightarrow{O A}=0 \vec{i}+30 \vec{j}, \overrightarrow{A B}=20 \vec{i}+0 \vec{j}$

$\overrightarrow{B C}=-30 \sqrt{2} \cos 45^{\circ} \dot{i}-30 \sqrt{2} \sin 45^{\circ} \vec{j}=-30 \vec{i}-30 \vec{j}$
\therefore Net displacement, $\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A B}+\overrightarrow{B C}=-10 \vec{i}+0 \vec{j}$

$$
|\overrightarrow{O C}|=10 \mathrm{~m}
$$

29. (a) An aeroplane flies 400 m north and 300 m south so the net displacement is 100 m towards north.

Then it flies $1200 m$ upward so $r=\sqrt{(100)^{2}+(1200)^{2}}$

$$
=1204 \mathrm{~m} \simeq 1200 \mathrm{~m}
$$

The option should be 1204 m , because this value mislead one into thinking that net displacement is in upward direction only.
30. (b) Total time of motion is $2 \mathrm{~min} 20 \mathrm{sec}=140 \mathrm{sec}$.

As time period of circular motion is 40 sec so in 140 sec . athlete will complete 3.5 revolution i.e., He will be at diametrically opposite point i.e., Displacement $=2 R$.
31. (c) Horizontal distance covered by the wheel in half revolution $=\pi R$.

So the displacement of the point which was initially in contact with ground $=A A^{\prime}=\sqrt{(\pi R)^{2}+(2 R)^{2}}$
$=R \sqrt{\pi^{2}+4}=\sqrt{\pi^{2}+4}$ (As $R=1 m$)
32. (d) As the total distance is divided into two equal parts therefore distance averaged speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
33.
(d) $\frac{v_{A}}{v_{B}}=\frac{\tan \theta_{A}}{\tan \theta_{B}}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}}=\frac{1 / \sqrt{3}}{\sqrt{3}}=\frac{1}{3}$
34.
(b) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 20 \times 30}{20+30}$
$=\frac{120}{5}=24 \mathrm{~km} / \mathrm{hr}$
35. (b) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 2.5 \times 4}{2.5+4}$
$=\frac{200}{65}=\frac{40}{13} \mathrm{~km} / \mathrm{hr}$
36. (c) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 30 \times 50}{30+50}$
$=\frac{75}{2}=37.5 \mathrm{~km} / \mathrm{hr}$
37. (d) Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{x}{t_{1}+t_{2}}$
$=\frac{x}{\frac{x / 3}{v_{1}}+\frac{2 x / 3}{v_{2}}}=\frac{1}{\frac{1}{3 \times 20}+\frac{2}{3 \times 60}}=36 \mathrm{~km} / \mathrm{hr}$
38. (a) Time average speed $=\frac{v_{1}+v_{2}}{2}=\frac{80+40}{2}=60 \mathrm{~km} / \mathrm{hr}$.
39. (b) Distance travelled by train in first 1 hour is 60 km and distance in next $1 / 2$ hour is 20 km .

So Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{60+20}{3 / 2}$
$=53.33 \mathrm{~km} /$ hour
40. D
41. (c) Total distance to be covered for crossing the bridge
$=$ length of train + length of bridge
$=150 \mathrm{~m}+850 \mathrm{~m}=1000 \mathrm{~m}$
Time $=\frac{\text { Distance }}{\text { Velocity }}=\frac{1000}{45 \times \frac{5}{18}}=80 \mathrm{sec}$
42. (c) Displacement of the particle will be zero because it comes back to its starting point

Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{30 \mathrm{~m}}{10 \mathrm{sec}}=3 \mathrm{~m} / \mathrm{s}$
43. (d) Velocity of particle $=\frac{\text { Total diplacement }}{\text { Total time }}$
$=\frac{\text { Diameter of circle }}{5}=\frac{2 \times 10}{5}=4 \mathrm{~m} / \mathrm{s}$
44. (d) A man walks from his home to market with a speed of $5 \mathrm{~km} / \mathrm{h}$. Distance $=2.5 \mathrm{~km}$ and time $=\frac{d}{v}=\frac{2.5}{5}=\frac{1}{2} \mathrm{hr}$.
and he returns back with speed of $7.5 \mathrm{~km} / \mathrm{h}$ in rest of time of 10 minutes.
Distance $=7.5 \times \frac{10}{60}=1.25 \mathrm{~km}$
So, Average speed $=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{(2.5+1.25) \mathrm{km}}{(40 / 60) \mathrm{hr}}=\frac{45}{8} \mathrm{~km} / \mathrm{hr}$.
45.
(b) $\frac{\mid \text { Average velocity } \mid}{\mid \text { Average speed } \mid}=\frac{\mid \text { displacement } \mid}{\mid \text { distance } \mid} \leq 1$
because displacement will either be equal or less than distance. It can never be greater than distance.

[CHEMISTRY]

46.
47.

$l=3$ stands for f-subshell that can accomodate at the maximum 14 electrons.
48.
49.
50.
$l=3(f$-subshell $) \Rightarrow(2 l+1)$, i.e., 7 orbitals.
51.
$r=\frac{0.529 n^{2}}{Z} \AA \Rightarrow A=2 \pi\left(\frac{0.529 n^{2}}{Z}\right)^{2}$
$\frac{A_{2}}{A_{1}}=\frac{\left(2^{2}\right)^{2}}{\left(1^{2}\right)^{2}}=16: 1$
52.
53.
(ii) $l=2$ is not allowed for $n=2$.
(iv) $m=-1$ is not allowed for $l=0$.
(v) $m=3$ is not allowed for $l=2$.
54.

A subshell has $(2 l+1)$ orbitals and $2(2 l+1)$, i.e., $(4 l+2)$ electrons.
55.

For $l=2, m$ value ' -3 ' is not possible.
56.

KE per atom $=\frac{\left(4.4 \times 10^{-19}\right)-\left(4.0 \times 10^{-19}\right)}{2}=\mathbf{2 . 0} \times \mathbf{1 0}^{-\mathbf{2 0}} \mathbf{J}$

AVIRAL CLASSES

CREATING SCHOLARS
57.

$2 p^{4}$ is | $\uparrow \downarrow$ | \uparrow | \uparrow |
| :--- | :--- | :--- | with two unpaired electrons.

58.

$\mathrm{Co}^{3+}, Z=27$ has V.S. electronic configuration $3 d^{6}$.
59.

It is according to Aufbau principle, or $7 s 6 f 5 d 7 p$.
60.

Orbital angular momentum

$$
\begin{aligned}
& =\sqrt{l(l+1)} \times \frac{h}{2 \pi} \\
& =\sqrt{1(1+1)} \times \frac{h}{2 \pi} \quad(\text { For } p, l=1) \\
& =\sqrt{2} \times \frac{h}{2 \pi}=\frac{\mathbf{h}}{\sqrt{2} \pi}
\end{aligned}
$$

61.

Valence electron is $5 s^{1}$
$\Rightarrow \quad n=5, l=0, m=0, s=+\frac{1}{2}$
62.
$n=4, l=3 \quad \Rightarrow 4 f$ subshell
Total electrons $=2(2 l+1)$

$$
=2 \times(2 \times 3+1)=\mathbf{1 4}
$$

63.

The set of quantum number

$$
n=3, l=1, m=-1
$$

stands for a single p-orbital which will have at the most $\mathbf{2}$-electrons.
64.
$m=0$, represents only one orbital.
65.
$\operatorname{Cr}(Z=24): 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
Total electrons in $l=1$, i.e., p-subshell $=6+6=\mathbf{1 2}$
Total electrons in $l=2$, i.e., d-subshell $=\mathbf{5}$.
66.
$\mathrm{Cr}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4}: d$-electrons $=4$
$\mathrm{Ne}: 1 s^{2} 2 s^{2} 2 p^{6}: s$-electrons $=2+2=4$
$\mathrm{Fe}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}: d$-subshell has 4 unpaired clectrons.
$\mathrm{O}: 1 s^{2} 2 s^{2} 2 p^{4}: p$-electrons $=4$
$\mathrm{Fe}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}: d$-electrons $=5$
67.
' $n+l$ ' rule is not applicable to H -atom. Energy system is

$$
1 s<2 s=2 p<3 s=3 p=3 d<\ldots
$$

So, energy in H -atom is related with \boldsymbol{n} value only.
68.
$\mathrm{F}(Z=9): 1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} \quad$.
$9^{\text {th }}$ electron is $2 p_{y}^{\prime}$, which has $n=2, l=1, m= \pm 1$ (By convention, for p_{x} and p_{y}),
$s=+\frac{1}{2}$ or $-\frac{1}{2}$.
69.

Number of spherical or radial nodes is $(n-l-1)$.
For $1 s, n-l-1=1-0-1=0 \quad$ For $2 p, n-l-1=2-1-1=0$
For $3 d, n-l-1=3-2-1=0 \quad$ For $4 f, n-l-1=4-3-1=0$
$\mathbf{T i}^{\mathbf{2 +}}(Z=22), \mathbf{V}^{\mathbf{3 +}}(Z=23), \mathbf{C r}^{\mathbf{4 +}}(Z=24)$ and $\mathbf{M} \mathbf{n}^{5+}(Z=25)$ have same electronic
configuration $[\mathrm{Ar}] 3 d^{2}$. They have the same number of $3 d$-electrons, i.e., 2 .
71.

$$
\begin{aligned}
\frac{(\Delta x \cdot m \cdot \Delta v)_{e}}{(\Delta x \cdot m \cdot \Delta v)_{p}} & =\frac{h / 4 \pi}{h / 4 \pi}=1 \\
\frac{m_{e} \cdot \Delta v_{e}}{m_{p} \cdot \Delta v_{p}} & =\mathbf{1} \\
\frac{\Delta v_{e}}{\Delta v_{p}}=\frac{m_{p}}{m_{e}} & =\mathbf{1 8 3 6}: \mathbf{1}
\end{aligned}
$$

Mn^{2+} due to presence of five unpaired ele electrons has maximum magnetic moment.
76
77.
78.
78.
80.
81.
82.
83.
84.
85.
86.
72.
73.
74.
75.
76.

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\mathrm{mv}} ; \mathrm{m}=\mathrm{lg}=10^{-3} \mathrm{~kg}, \mathrm{v}=100 \mathrm{~ms}^{-1}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Js} \\
\therefore & \lambda \frac{6.626 \times 10^{-34} \mathrm{Js}\left(\mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)}{10^{-3} \mathrm{~kg} \times 100 \mathrm{~ms}^{-1}}=6.626 \times 10^{-33} \mathrm{~m}
\end{aligned}
$$

$n=3, I=0(3 s) ; n=3, I=1(3 p)$
$\mathrm{n}=3, \mathrm{I}=2(3 \mathrm{~d}) ; \mathrm{n}=4, \mathrm{I}=4(4 \mathrm{~s})$
3d has higher energy than $4 s$ because it has higher $(n+I)$ value. The increasing order of energies
is :
$3 s<3 p<4 s<3 d$
Number of orbitals in an energy level $n^{2}=4^{2}=16$
Outermost electron of sodium is $3 \mathbf{s}^{1}$.
${ }_{29} \mathrm{Cu}=\left[{ }_{18} \mathrm{Ar}\right] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1} \quad \therefore \quad \mathrm{Cu}^{2+}=\left[{ }_{18} \mathrm{Ar}\right] 3 \mathrm{~d}^{9} 4 \mathrm{~s}^{0}$
98. Species : $\quad{ }_{19} \mathrm{~K} \quad{ }_{20} \mathrm{Ca}^{2+}{ }_{21} \mathrm{Sc}^{3+}$

No. of es $\quad 19-1=18 \quad 20-2=18 \quad 21-3=18 \quad 17+1=18$
87.
88.
89.

```
\({ }_{58} \mathrm{Ce}:\left[{ }_{54} \mathrm{Xe}\right] 4 \mathrm{f}^{2} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{2}\)
\(\therefore \quad \mathrm{Ce}^{3+}:\left[{ }_{54} \mathrm{Xe}\right] 4 \mathrm{f}^{1}\)
```

90.

${ }_{37} \mathbf{R b}$: [Kr]5s ${ }^{1}$
$\therefore \quad$ Valence electron in \mathbf{R}_{b} is $\mathbf{5} \mathbf{s}^{\mathbf{1}}$ and its quantum numbers are :
$\mathrm{n}=5, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=+\frac{1}{2}$

AVIRAL CLASSES

creating scholars

